

Piauí H₂ Valley

European Hydrogen Week, 20th November

AGENDA

Project Overview

Demand sizing

Cost competitiveness assessment

Next steps

Project overview

As regions think about integrating H_2 into their operations, they typically ask the following questions:

- How does H₂ contribute to my climate goals?
- Where do I start developing H₂ in my territory?
- Who are/will be the off-takers?
- Who are/will be the producers?
- How to transport H₂ and derivatives?
- How much will these projects cost?
- What will be the price of H₂ in the future?
- How competitive would be H₂ made in my region?
- What partners are needed to build these projects?
- What regulatory/policy enablers are required?

Piauí H₂ Valley study aims at strategic positioning the state in the H₂ economy

The project is being developed in consultation with relevant stakeholders, including H₂ producers and consumers

Producers

Aiming at producing green H2 at lowest cost for secured offtakers on domestic market and/or export

Consumers

Aiming at procuring green H2 to ensure security of energy supply and predictable costs

Other stakeholders

Aiming at attracting **players** in the whole H2 value chain, ensuring necessary infrastructure and authorizations

And many more to come

Demand sizing

Internal demand & Export demand

Piauí is well positioned to capture ~0.4 MtH₂ of H₂ demand in 2030 mainly through exports to Europe

1. Main export countries considered for the study are Germany, Netherlands, Belgium, United Kingdom, these are seen as net importers in 2050, full explanation is in the export demand chapter | 2. Full breakdown of energy carriers required will be presented in future phases of the study | 3. The conversion to electrolyzer capacity considered an efficiency of 54KW/kgH₂ in 2030 and 50KWh/KgH₂ in 2050 operating on base load, full RE operation will require a larger installed capacity due to the intermittent nature of RE

engie

Impact

9 | © ENGIE Impact

Piauí rely on three competitive advantages to better position against other H₂ exporters to Europe

Renewable resources

Piauí has vast areas with world-class capacity factors to produce RE

RE capacity factor		
Piauí	25%	47%
* Chile	34%	41%
Australia	28%	48%
UAE	25%	32%
* Morocco	27%	41%

Geographical proximity

Piauí is closer to Europe than other H₂ export candidates

Port distance to the EU	Nautical miles	
iauí Piauí	4,000	
Rio de Janeiro	5,200	
Newcastle	11,600	
Jebel Ali	7,100	
* Casablanca	2,100	

EU Regulatory advantage

Piauí could produce H₂ and derivatives that meet a strict regulatory framework

Regulations	A ¹	HM ²	GHG ³
Miauí	\checkmark	\checkmark	\checkmark
Letter Chile	!	!	\checkmark
Australia	!	!	!
UAE	!	!	\checkmark
* Morocco	!	<u>!</u>	\checkmark

1. Additionality applies to geographies where RE account for less than 90% in the power mix, it forbids the use of the grid to power the electrolyzer and forces H₂ producers to develop their own RE supply thereby adding a bottleneck in the development of H₂ production projects | 2. Hourly matching applies to geographies that are not allowed to use the grid and forces the production of H₂ to operate at the same time as the RE sources thereby limiting the operation of the electrolyzer | 3. GHG emissions requirement compels producers to assess H₂ lifecycle emissions (incl. transportation) and prove a reduction of at least 70% compared to grey H₂, thereby significantly limiting far distant countries like Australia.

10 ports and 4 countries in Europe have been identified as potential key players in H2 imports

1. The UK has an ambiguous strategy, initially focusing on local production (2021) and recently leaning towards both imports to support energy security and exports targeting continental Europe (2023)

2. The domestic demand of transit countries is not considered in this study

engie

Impact

European imports will amount to 10 MtH₂ in 2030, 90% will come from international shipping using mainly ammonia as a carrier

 9 MtH₂ expected from international shipping, which means 90% of RePowerEU target

WIP

- About 1/3 of the import volumes will have to be exported through alternative carriers other than ammonia (methanol or e-LNG)
- Additional 11 MtH₂ can be needed from export if European countries fall short of their production targets and need to import e-LNG to meet their demand target.

Assumptions: • H₂ pipeline capacity = 1 MtH₂ out of 4 MtH₂ announced for 2030 from the SoutH₂ Corridor assuming production projects in Algeria will not be ready on time • Port of Rotterdam's import capacity = 2 MtH₂ out of 4 MtH₂ announced for 2030, assumed exclusively in the form of NH₃ • e-LNG: Liquefied Natural Gas produced through methanation

Piauí could aim at exporting 0.2-0.4 MtH₂ in 2030, capturing 2-4% of total exports to Europe

Assumptions: • H₂ pipeline capacity = 1 MtH₂ out of 4 MtH₂ announced for 2030 from the SoutH₂ Corridor assuming production projects in Algeria will not be ready on time • Port of Rotterdam's import capacity = 2 MtH₂ out of 4 MtH₂ announced for 2030, assumed exclusively in the form of NH₃ • e-LNG: Liquefied Natural Gas produced through methanation

Addressable demand in Europe in 2050 amounts to 46-75 MtH₂ with the largest share in Germany

1. Transport System Operators gathered into the Gas for Climate Coalition, part of the European Network of Gas TSO (ENTSO-G). 2. IEA, H2 Council, Bloomberg, Deloitte. Based on their global forecasts, assuming Europe will make up 15% of world consumption. European addressable demand is expected at 46-75 MtH₂ in 2050

- Other major H2-consuming countries' strategy is to act as transit countries and/or as net exporters (e.g., France, Spain, Portugal, Italy, Croatia)
- External sources expect a total European demand of 50-108 MtH₂ in 2050 (including in countries planning to focus on local production)

Piauí could aim at exporting 0.8-1.3 MtH₂ in 2050, capturing \sim 3% of European H₂ imports

 In 2050, 50% of Europe local demand will be met by imports

- Fierce competition is expected between nearby countries (e.g., Morocco, Norway) and distant shipping competitors (e.g., UAE, Chile, Australia)
- Piauí could meet 3% of export share to Europe by leveraging its RE potential, geographical location, and potential regulatory advantage.

Additional demand from green steel, fertilizers and mining sectors is added on top of the natural uptake curve

WIP

Relevant sectors are considered industry, transportation and energy. Industry and transportation are assumed to be early H₂ adopters

Cost Competitiveness Assessment

To select the hubs, key factors such as renewable resources, potential off-takers and available infrastructure were considered

Five potential H₂ hubs were identified, one on the ZPE Parnaiba is confirmed with a main focus of producing H₂ for export

Note: layers are not exhaustive; the most relevant infrastructure is shown in the map. For more details visit https://rpubs.com/Cleane / and Webmap EPE

LCOH is expected to be ~2.30 USD/kg H_2 in 2030 and reach ~1.70 USD/kg H2 by 2050, in the coastal hub

2. Results from Prosumer, ENGIE's optimization tool that finds the optimum sizing of the H2 value chain equipment based on inputs such as CAPEX/OPEX and efficiencies of equipment, grid price, renewable profile, H2 demand, lifetime, etc. | 2. Key assumptions (2030/2050): PV CAPEX 730/600 USD/kW; Wind CAPEX 1,000/730 USD/kW; electrolyzer CAPEX 25,000/12,000 USD/(kg H2/h); compressor CAPEX 3,800 USD/(kg H2/h); storage CAPEX 1,000 USD/kg H2. | 3. Technology development is expected for H2 and RE technologies, meaning a decrease in CAPEX and therefore a decrease in LCOE and LCOH.

Due to its low grid prices and good RE potential, Piauí is expected to have a competitive LCOH globally

1. This benchmark includes H₂ Valleys (Perú and South Africa) and other H₂ studies (Netherlands and Germany) previously developed by ENGIE Impact

2. LCOH for South Africa and Ceara/Pernambuco was not calculated for 2050

Next steps

Next steps will ensure Piauí's transition from strategy phase to the scale-up of a H₂ economy in the State

Thank you

engieimpact.com